Tibbles

R4DS 07 - Tibbles with tibbles

lruolin
05-12-2021

R4DS Practice 07: Tibbles

The codes below are from the practice exercises in https://r4ds.had.co.nz/, and are taken with reference from: https://jrnold.github.io/r4ds-exercise-solutions/

Let’s begin now

Loading tidyverse package.

To coerce a data frame into a tibble, use the as_tibble() function:

iris # this is a dataframe
    Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
1            5.1         3.5          1.4         0.2     setosa
2            4.9         3.0          1.4         0.2     setosa
3            4.7         3.2          1.3         0.2     setosa
4            4.6         3.1          1.5         0.2     setosa
5            5.0         3.6          1.4         0.2     setosa
6            5.4         3.9          1.7         0.4     setosa
7            4.6         3.4          1.4         0.3     setosa
8            5.0         3.4          1.5         0.2     setosa
9            4.4         2.9          1.4         0.2     setosa
10           4.9         3.1          1.5         0.1     setosa
11           5.4         3.7          1.5         0.2     setosa
12           4.8         3.4          1.6         0.2     setosa
13           4.8         3.0          1.4         0.1     setosa
14           4.3         3.0          1.1         0.1     setosa
15           5.8         4.0          1.2         0.2     setosa
16           5.7         4.4          1.5         0.4     setosa
17           5.4         3.9          1.3         0.4     setosa
18           5.1         3.5          1.4         0.3     setosa
19           5.7         3.8          1.7         0.3     setosa
20           5.1         3.8          1.5         0.3     setosa
21           5.4         3.4          1.7         0.2     setosa
22           5.1         3.7          1.5         0.4     setosa
23           4.6         3.6          1.0         0.2     setosa
24           5.1         3.3          1.7         0.5     setosa
25           4.8         3.4          1.9         0.2     setosa
26           5.0         3.0          1.6         0.2     setosa
27           5.0         3.4          1.6         0.4     setosa
28           5.2         3.5          1.5         0.2     setosa
29           5.2         3.4          1.4         0.2     setosa
30           4.7         3.2          1.6         0.2     setosa
31           4.8         3.1          1.6         0.2     setosa
32           5.4         3.4          1.5         0.4     setosa
33           5.2         4.1          1.5         0.1     setosa
34           5.5         4.2          1.4         0.2     setosa
35           4.9         3.1          1.5         0.2     setosa
36           5.0         3.2          1.2         0.2     setosa
37           5.5         3.5          1.3         0.2     setosa
38           4.9         3.6          1.4         0.1     setosa
39           4.4         3.0          1.3         0.2     setosa
40           5.1         3.4          1.5         0.2     setosa
41           5.0         3.5          1.3         0.3     setosa
42           4.5         2.3          1.3         0.3     setosa
43           4.4         3.2          1.3         0.2     setosa
44           5.0         3.5          1.6         0.6     setosa
45           5.1         3.8          1.9         0.4     setosa
46           4.8         3.0          1.4         0.3     setosa
47           5.1         3.8          1.6         0.2     setosa
48           4.6         3.2          1.4         0.2     setosa
49           5.3         3.7          1.5         0.2     setosa
50           5.0         3.3          1.4         0.2     setosa
51           7.0         3.2          4.7         1.4 versicolor
52           6.4         3.2          4.5         1.5 versicolor
53           6.9         3.1          4.9         1.5 versicolor
54           5.5         2.3          4.0         1.3 versicolor
55           6.5         2.8          4.6         1.5 versicolor
56           5.7         2.8          4.5         1.3 versicolor
57           6.3         3.3          4.7         1.6 versicolor
58           4.9         2.4          3.3         1.0 versicolor
59           6.6         2.9          4.6         1.3 versicolor
60           5.2         2.7          3.9         1.4 versicolor
61           5.0         2.0          3.5         1.0 versicolor
62           5.9         3.0          4.2         1.5 versicolor
63           6.0         2.2          4.0         1.0 versicolor
64           6.1         2.9          4.7         1.4 versicolor
65           5.6         2.9          3.6         1.3 versicolor
66           6.7         3.1          4.4         1.4 versicolor
67           5.6         3.0          4.5         1.5 versicolor
68           5.8         2.7          4.1         1.0 versicolor
69           6.2         2.2          4.5         1.5 versicolor
70           5.6         2.5          3.9         1.1 versicolor
71           5.9         3.2          4.8         1.8 versicolor
72           6.1         2.8          4.0         1.3 versicolor
73           6.3         2.5          4.9         1.5 versicolor
74           6.1         2.8          4.7         1.2 versicolor
75           6.4         2.9          4.3         1.3 versicolor
76           6.6         3.0          4.4         1.4 versicolor
77           6.8         2.8          4.8         1.4 versicolor
78           6.7         3.0          5.0         1.7 versicolor
79           6.0         2.9          4.5         1.5 versicolor
80           5.7         2.6          3.5         1.0 versicolor
81           5.5         2.4          3.8         1.1 versicolor
82           5.5         2.4          3.7         1.0 versicolor
83           5.8         2.7          3.9         1.2 versicolor
84           6.0         2.7          5.1         1.6 versicolor
85           5.4         3.0          4.5         1.5 versicolor
86           6.0         3.4          4.5         1.6 versicolor
87           6.7         3.1          4.7         1.5 versicolor
88           6.3         2.3          4.4         1.3 versicolor
89           5.6         3.0          4.1         1.3 versicolor
90           5.5         2.5          4.0         1.3 versicolor
91           5.5         2.6          4.4         1.2 versicolor
92           6.1         3.0          4.6         1.4 versicolor
93           5.8         2.6          4.0         1.2 versicolor
94           5.0         2.3          3.3         1.0 versicolor
95           5.6         2.7          4.2         1.3 versicolor
96           5.7         3.0          4.2         1.2 versicolor
97           5.7         2.9          4.2         1.3 versicolor
98           6.2         2.9          4.3         1.3 versicolor
99           5.1         2.5          3.0         1.1 versicolor
100          5.7         2.8          4.1         1.3 versicolor
101          6.3         3.3          6.0         2.5  virginica
102          5.8         2.7          5.1         1.9  virginica
103          7.1         3.0          5.9         2.1  virginica
104          6.3         2.9          5.6         1.8  virginica
105          6.5         3.0          5.8         2.2  virginica
106          7.6         3.0          6.6         2.1  virginica
107          4.9         2.5          4.5         1.7  virginica
108          7.3         2.9          6.3         1.8  virginica
109          6.7         2.5          5.8         1.8  virginica
110          7.2         3.6          6.1         2.5  virginica
111          6.5         3.2          5.1         2.0  virginica
112          6.4         2.7          5.3         1.9  virginica
113          6.8         3.0          5.5         2.1  virginica
114          5.7         2.5          5.0         2.0  virginica
115          5.8         2.8          5.1         2.4  virginica
116          6.4         3.2          5.3         2.3  virginica
117          6.5         3.0          5.5         1.8  virginica
118          7.7         3.8          6.7         2.2  virginica
119          7.7         2.6          6.9         2.3  virginica
120          6.0         2.2          5.0         1.5  virginica
121          6.9         3.2          5.7         2.3  virginica
122          5.6         2.8          4.9         2.0  virginica
123          7.7         2.8          6.7         2.0  virginica
124          6.3         2.7          4.9         1.8  virginica
125          6.7         3.3          5.7         2.1  virginica
126          7.2         3.2          6.0         1.8  virginica
127          6.2         2.8          4.8         1.8  virginica
128          6.1         3.0          4.9         1.8  virginica
129          6.4         2.8          5.6         2.1  virginica
130          7.2         3.0          5.8         1.6  virginica
131          7.4         2.8          6.1         1.9  virginica
132          7.9         3.8          6.4         2.0  virginica
133          6.4         2.8          5.6         2.2  virginica
134          6.3         2.8          5.1         1.5  virginica
135          6.1         2.6          5.6         1.4  virginica
136          7.7         3.0          6.1         2.3  virginica
137          6.3         3.4          5.6         2.4  virginica
138          6.4         3.1          5.5         1.8  virginica
139          6.0         3.0          4.8         1.8  virginica
140          6.9         3.1          5.4         2.1  virginica
141          6.7         3.1          5.6         2.4  virginica
142          6.9         3.1          5.1         2.3  virginica
143          5.8         2.7          5.1         1.9  virginica
144          6.8         3.2          5.9         2.3  virginica
145          6.7         3.3          5.7         2.5  virginica
146          6.7         3.0          5.2         2.3  virginica
147          6.3         2.5          5.0         1.9  virginica
148          6.5         3.0          5.2         2.0  virginica
149          6.2         3.4          5.4         2.3  virginica
150          5.9         3.0          5.1         1.8  virginica
as_tibble(iris) # this is a tibble
# A tibble: 150 x 5
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
          <dbl>       <dbl>        <dbl>       <dbl> <fct>  
 1          5.1         3.5          1.4         0.2 setosa 
 2          4.9         3            1.4         0.2 setosa 
 3          4.7         3.2          1.3         0.2 setosa 
 4          4.6         3.1          1.5         0.2 setosa 
 5          5           3.6          1.4         0.2 setosa 
 6          5.4         3.9          1.7         0.4 setosa 
 7          4.6         3.4          1.4         0.3 setosa 
 8          5           3.4          1.5         0.2 setosa 
 9          4.4         2.9          1.4         0.2 setosa 
10          4.9         3.1          1.5         0.1 setosa 
# … with 140 more rows

To create a tibble:

tibble(
  x = 1:5,
  y = 1, # automatically filled down
  z = x ^2 + y
)
# A tibble: 5 x 3
      x     y     z
  <int> <dbl> <dbl>
1     1     1     2
2     2     1     5
3     3     1    10
4     4     1    17
5     5     1    26

To create a transposed tibble, use tribble() :

tribble(
  ~x, ~y, ~z,
  # -- # -- # -- 
  "a", 2, 3.6,
  "b", 1, 8.5
)
# A tibble: 2 x 3
  x         y     z
  <chr> <dbl> <dbl>
1 a         2   3.6
2 b         1   8.5

Exercise:

To check if an object is a tibble:

str(mtcars) # this is a dataframe
'data.frame':   32 obs. of  11 variables:
 $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
 $ cyl : num  6 6 4 6 8 6 8 4 4 6 ...
 $ disp: num  160 160 108 258 360 ...
 $ hp  : num  110 110 93 110 175 105 245 62 95 123 ...
 $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
 $ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
 $ qsec: num  16.5 17 18.6 19.4 17 ...
 $ vs  : num  0 0 1 1 0 1 0 1 1 1 ...
 $ am  : num  1 1 1 0 0 0 0 0 0 0 ...
 $ gear: num  4 4 4 3 3 3 3 4 4 4 ...
 $ carb: num  4 4 1 1 2 1 4 2 2 4 ...
is_tibble(mtcars)
[1] FALSE
is_tibble(diamonds)
[1] TRUE
is_tibble(iris)
[1] FALSE

Compare and contrast the following operations on a data.frame and equivalent tibble:

df <- data.frame(abc = 1, 
                 xyz = "a")

df
  abc xyz
1   1   a
df$x
[1] "a"
df[ , "xyz"]
[1] "a"
df[ , c("abc", "xyz")]
  abc xyz
1   1   a
tbl <- as_tibble(df)
tbl
# A tibble: 1 x 2
    abc xyz  
  <dbl> <chr>
1     1 a    
tbl[, "xyz"]
# A tibble: 1 x 1
  xyz  
  <chr>
1 a    
tbl[ , c("abc", "xyz")]
# A tibble: 1 x 2
    abc xyz  
  <dbl> <chr>
1     1 a    

Practice referring to nonsyntactic names in the following dataframe:

annoying <- tibble(
  `1` = 1:10,
  `2` = `1` * 2 + rnorm(length(`1`))
)

annoying
# A tibble: 10 x 2
     `1`   `2`
   <int> <dbl>
 1     1  3.59
 2     2  4.09
 3     3  6.77
 4     4  8.48
 5     5  8.72
 6     6 13.8 
 7     7 14.0 
 8     8 15.0 
 9     9 17.8 
10    10 21.1 
# Extract the variable called 1:

annoying$`1`
 [1]  1  2  3  4  5  6  7  8  9 10
# Plot a scatterplot of 1 vs 2

annoying %>% 
  ggplot(aes(x = `1`,
         y = `2`)) +
  geom_point() +
  theme_classic()
# Create a new column called 3, which is 2 divided by 1

annoying_new <- annoying %>% 
  mutate(`3` = `2` / `1`) %>% 
  dplyr::rename(one = `1`,  # need to specify dplyr:: if not will have conflict with plyr
                two = `2`,
                three = `3`)

glimpse(annoying_new)
Rows: 10
Columns: 3
$ one   <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
$ two   <dbl> 3.585017, 4.092088, 6.767932, 8.476036, 8.722597, 13.7…
$ three <dbl> 3.585017, 2.046044, 2.255977, 2.119009, 1.744519, 2.29…

What does tibble::enframe() do?

enframe() converts named atomic vectors or lists to one- or two-column data frames. For a list, the result will be a nested tibble with a column of type list. For unnamed vectors, the natural sequence is used as name column.

enframe(1:3)
# A tibble: 3 x 2
   name value
  <int> <int>
1     1     1
2     2     2
3     3     3
enframe(c(a = 5, b = 7))
# A tibble: 2 x 2
  name  value
  <chr> <dbl>
1 a         5
2 b         7
enframe(list(one = 1, two = 2:3, three = 4:6))
# A tibble: 3 x 2
  name  value    
  <chr> <list>   
1 one   <dbl [1]>
2 two   <int [2]>
3 three <int [3]>
deframe(tibble(a = as.list(1:3)))
[[1]]
[1] 1

[[2]]
[1] 2

[[3]]
[1] 3

What option controls how many additional column names are printed at the foot of a tibble?

print(mtcars)
                     mpg cyl  disp  hp drat    wt  qsec vs am gear
Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4
Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4
Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4
Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3
Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3
Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3
Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3
Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4
Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4
Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4
Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4
Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3
Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3
Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3
Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3
Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3
Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3
Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4
Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4
Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4
Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3
Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3
AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3
Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3
Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3
Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4
Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5
Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5
Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5
Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5
Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5
Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4
                    carb
Mazda RX4              4
Mazda RX4 Wag          4
Datsun 710             1
Hornet 4 Drive         1
Hornet Sportabout      2
Valiant                1
Duster 360             4
Merc 240D              2
Merc 230               2
Merc 280               4
Merc 280C              4
Merc 450SE             3
Merc 450SL             3
Merc 450SLC            3
Cadillac Fleetwood     4
Lincoln Continental    4
Chrysler Imperial      4
Fiat 128               1
Honda Civic            2
Toyota Corolla         1
Toyota Corona          1
Dodge Challenger       2
AMC Javelin            2
Camaro Z28             4
Pontiac Firebird       2
Fiat X1-9              1
Porsche 914-2          2
Lotus Europa           2
Ford Pantera L         4
Ferrari Dino           6
Maserati Bora          8
Volvo 142E             2
print(mtcars, n_extra = 4)
                     mpg cyl  disp  hp drat    wt  qsec vs am gear
Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4
Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4
Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4
Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3
Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3
Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3
Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3
Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4
Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4
Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4
Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4
Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3
Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3
Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3
Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3
Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3
Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3
Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4
Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4
Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4
Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3
Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3
AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3
Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3
Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3
Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4
Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5
Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5
Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5
Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5
Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5
Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4
                    carb
Mazda RX4              4
Mazda RX4 Wag          4
Datsun 710             1
Hornet 4 Drive         1
Hornet Sportabout      2
Valiant                1
Duster 360             4
Merc 240D              2
Merc 230               2
Merc 280               4
Merc 280C              4
Merc 450SE             3
Merc 450SL             3
Merc 450SLC            3
Cadillac Fleetwood     4
Lincoln Continental    4
Chrysler Imperial      4
Fiat 128               1
Honda Civic            2
Toyota Corolla         1
Toyota Corona          1
Dodge Challenger       2
AMC Javelin            2
Camaro Z28             4
Pontiac Firebird       2
Fiat X1-9              1
Porsche 914-2          2
Lotus Europa           2
Ford Pantera L         4
Ferrari Dino           6
Maserati Bora          8
Volvo 142E             2

Reference

https://r4ds.had.co.nz/

https://jrnold.github.io/r4ds-exercise-solutions/

Citation

For attribution, please cite this work as

lruolin (2021, May 12). pRactice corner: Tibbles. Retrieved from https://lruolin.github.io/myBlog/posts/20210514_Tidyverse Chap 7 - Tibbles/

BibTeX citation

@misc{lruolin2021tibbles,
  author = {lruolin, },
  title = {pRactice corner: Tibbles},
  url = {https://lruolin.github.io/myBlog/posts/20210514_Tidyverse Chap 7 - Tibbles/},
  year = {2021}
}